Lyapunov Exponents of Hyperbolic Measures and Hyperbolic Periodic Orbits

نویسندگان

  • ZHENQI WANG
  • WENXIANG SUN
چکیده

Lyapunov exponents of a hyperbolic ergodic measure are approximated by Lyapunov exponents of hyperbolic atomic measures on periodic orbits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Vanishing of All Lyapunov Exponents for Iterated Function Systems

Given any compact connected manifold M , we describe Copen sets of iterated functions systems (IFS’s) admitting fully-supported ergodic measures whose Lyapunov exponents alongM are all zero. Moreover, these measures are approximated by measures supported on periodic orbits. We also describe C-open sets of IFS’s admitting ergodic measures of positive entropy whose Lyapunov exponents along M are ...

متن کامل

Rigidity of Equality of Lyapunov Exponents for Geodesic Flows

We study the relationship between the Lyapunov exponents of the geodesic flow of a closed negatively curved manifold and the geometry of the manifold. We show that if each periodic orbit of the geodesic flow has exactly one Lyapunov exponent on the unstable bundle then the manifold has constant negative curvature. We also show under a curvature pinching condition that equality of all Lyapunov e...

متن کامل

Approximation Properties on Invariant Measure and Oseledec Splitting in Non-uniformly Hyperbolic Systems

We prove that each invariant measure in a non-uniformly hyperbolic system can be approximated by atomic measures on hyperbolic periodic orbits. This contributes to our main result that the mean angle (Definition 1.10), independence number (Definition 1.6) and Oseledec splitting for an ergodic hyperbolic measure with simple spectrum can be approximated by those for atomic measures on hyperbolic ...

متن کامل

Some Non-hyperbolic Systems with Strictly Non-zero Lyapunov Exponents for All Invariant Measures: Horseshoes with Internal Tangencies

We study the hyperbolicity of a class of horseshoes exhibiting an internal tangency, i.e. a point of homoclinic tangency accumulated by periodic points. In particular these systems are strictly not uniformly hyperbolic. However we show that all the Lyapunov exponents of all invariant measures are uniformly bounded away from 0. This is the first known example of this kind.

متن کامل

Hyperbolic Dynamical Systems Andgeneration of Magnetic Fields

GENERATION OF MAGNETIC FIELDS BY PERFECTLY CONDUCTING FLUIDS. (1) Rafael de la Llave 2 3 Mathematics Department The University of Texas at Austin Austin TX 78712 Abstract. We study the spectrum of the operator describing the growth of magnetic elds in an in nitely conducting, incompressible uid. We show that, in many circumstances, it consists of an anulus and also give characterization of this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010